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ABSTRACT

The Kepler mission is designed to detect the transit of Earth-like planets around Sun-like stars by observing
100,000 stellar targets. Developing and testing the Kepler ground-segment processing system, in particular the
data analysis pipeline, requires high-fidelity simulated data. This simulated data is provided by the Kepler End-
to-End Model (ETEM). ETEM simulates the astrophysics of planetary transits and other phenomena, properties
of the Kepler spacecraft and the format of the downlinked data. Major challenges addressed by ETEM include
the rapid production of large amounts of simulated data, extensibility and maintainability.

Keywords: Kepler, pixel simulation

1. INTRODUCTION

The Kepler Mission continuously observes ∼165,000 target stars in Kepler’s 115 square degree Field of View
(FOV) seeking to discover Earth-like planets transiting solar-like stars by detecting photometric signatures of
transits.1, 2 Data is collected and stored for monthly downlink, and the data is processed in the Science Operations
Center (SOC).3, 4

In order to test the Kepler ground system the Kepler End-to-End Model (ETEM) was developed which
provides test data formatted as it appears when received by ground tracking stations and contains astrophysically
realistic.

Kepler operations has three phases: data collection, monthly data downlink and data processing to identify
transits and other astrophysical phenomena. These phases involve several organizations that must interface
smoothly. ETEM is designed to simulate the collected data, including high-fidelity simulations of astrophysical
processes including transit signals and stellar variability, as well as spacecraft noise and systematics. ETEM
packages this data in a way that mimics the data as it appears to NASA’s deep space network. Therefore a
single ETEM-generated data set can be used to test every step of Kepler data flow and processing, starting with
the arrival of the data on the ground and ending with the identification of planetary transits.

To support testing and development of Kepler operations ETEM is designed as a robust, extensible system
that allows the easy addition of new phenomena to be simulated. This paper is a description of the addition
of extensibility and robustness to ETEM beyond the system described elsewhere.13 After describing the Kepler

system and data simulated by ETEM, we describe the astrophysical simulation methods (§2) and the software
class and plugin structure (§4). We end the paper with a brief discussion of the use of ETEM data in testing
(§5).
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Figure 1. Left: The CCD array on the Kepler focal plane, showing the 21 modules, each of which has 2 2200 x 2048 pixel

CCDs. Each CCD is read out via 2 output channels. Smaller CCDs used as fine guidance sensors are also shown in each

corner, but are not discussed in this paper. Right: the pixel arrangement of each output channel.

1.1 The Kepler focal plane

The Kepler focal plane science sensors consist of 42 2200 column by 1044 row CCDs mounted on 21 electronic
modules (Fig 1) with an image scale of 3.98′′per pixel.5, 6 The first 20 rows of each CCD are not exposed to
the sky in order to provide calibration and diagnostic data as described below. Each CCD is divided into two
1112× 1044 output channels. Each output channels is supplemented by 26 trailing virtual rows, 12 leading serial
register columns and 20 trailing virtual columns, giving each output channel 1136×1070 addressable pixels. The
12 leading serial register columns and 20 trailing virtual columns are used to collect black level data for each row.
Kepler’s lack of a shutter means that pixels are exposed to the sky during readout, which causes image smear
along columns. The leading 20 masked and 26 trailing virtual columns measure this smear data. The black level
and smear data are called collateral data and are used to calibrate the pixel data during ground processing.7

The pair of CCDs on each module provide a contiguous 2200× 2048 pixel image of a portion of the Kepler field
of view.

Kepler is designed to continuously observe one field of the sky with fixed pointing throughout the mission.
Nonetheless there are two types of motion that must be simulated: residual pointing jitter and differential velocity
aberration (DVA) due to the very wide Kepler field of view. DVA can move a star as much as 0.6 pixels in a
quarter.

Every Kepler target is observed with a CCD readout every 6.52 seconds and co-added into 29.4 minute
observations, referred to as Long Cadence (LC) data. A smaller number of targets, at most 512, is co-added into
58.8 second Short Cadence (SC) observations. These data are collected nearly continuously for about 30 days
and downlinked via high-bandwidth Ka-band transmissions. Bandwidth constraints of the Ka-band transmission
limits the amount data that may be downlinked, making it impossible to downlink all 96 million pixel values
that are collected with each LC observation. Each target is therefore assigned a set of pixels sufficient to recover
the flux of that target,8 which provide the pixel flux time series in either short or long cadence. In addition all
pixels are occasionally downloaded, nominally once a month, producing a full frame image (FFI).

1.2 Kepler pixel and target types

Kepler pixels are collected for several types of targets:

Stellar targets9 are point-like sources whose pixels are selected to maximize the signal to noise ratio (SNR).
Stellar targets are specified by a Kepler ID, which is used to look up pertinent data in the Kepler Input



Catalog (KIC).10 Stellar targets may be either LC or SC and are associated with specific assigned pixels
via target definitions .8

Custom targets are explicitly specified collections of pixels. Custom targets are defined by a reference pixel
position and a set of offsets, one for each pixel, from that reference position. Custom targets are used for
non-stellar sources and diagnostic collections of pixels, and may be either SC or LC.

Background targets are small (nominally 2 × 2) sets of pixels that sample the background signal in long
cadence. These pixels are selected to support a 2D polynomial representation of the background.8

Reference pixel (RP) targets are special stellar targets used for diagnostics whose pixels are downlinked
bi-weekly via low-bandwidth X-band communications.11

1.3 The Kepler Data Path

Kepler CCD pixel data is converted into a 14-bit digital signal, which is co-added into 23-bit data (embedded
in 32-bit words). A nominal long exposure performs 270 co-adds of the 14-bit data. This data can then have
several compression options applied. The following describes the nominal path taken by data on the spacecraft:

• Pixel values are requantized into 16 bits via a pre-defined non-linear lookup table that is designed so that
the table step sizes are one quarter of the Poisson shot noise that would be associated with the pixel value.

• Every 48 long cadences an uncompressed baseline is stored to support the Huffman encoding in the next
section. The difference between this and the previous baseline is taken, and the Huffman encoded differences
are also stored to protect against data loss.

• The non-baseline cadence pixel values are subtracted from the latest baseline, and the differences are
compressed via Huffman encoding.

• The resulting data are packed into Consultative Committee on Space Data Systems (CCSDS) data source
packets and stored in the Kepler solid-state recorder.

• For monthly downlink the pixel data are packed first into Virtual Channel Data Units (VCDUs), which
are then packaged into Channel Access Data Units (CADUs) with Reed-Solomon encoding, randomization
and convolution encoding to increase robustness against data loss during transmission.

• The CADU data is transmitted to the the NASA Deep Space Network (DSN), which unpacks the data
into VCDUs which are delivered to the Kepler Mission operations center (MOC).

• The MOC further unpacks the data and delivers it to the Data Management Center (DMC) who extracts
the actual pixel data values and delivers it as FITS files to the Kepler Science Operations Center (SOC)
for processing.

• The SOC Data Analysis Pipeline processes the data, calibrating the pixels, performing photometry, search-
ing for planetary transits and other astrophysical phenomena and monitoring spacecraft health.

The SOC data analysis pipeline includes the following steps:

Pixel-level calibration7 which removes the CCD bias and dark levels, applies a flat field and removes smear
due to shutterless operation.

Creation of flux light curves22 via simple aperture photometry, including background processing and cosmic
ray removal.

Pre-search data conditioning? which removes various systematics from the flux light curves.

Transiting planet search? which whitens the flux time series for each target and applies the transit search
algorithm.



Data validation? which applies various tests to provide confidence metrics for the results of the transiting
planets search.

ETEM is tasked with generating high-fidelity synthetic data that exercises every step in the above chain with
realistic simulations of Kepler pixel data containing expected astrophysical effects including planetary transits
and spacecraft noise and systematics. In the above chain of data, the simulated pixel value up to requantization
into 16 bits is implemented in MATLAB, and the Huffman encoding and packaging of the data is implemented
in java. ETEM is designed to be extensible in several ways, allowing increased knowledge of the spacecraft and
astrophysics to be inserted as needed.

2. EFFICIENTLY SIMULATING ASTROPHYSICAL PHENOMENA

An ETEM simulation is performed for a single output channel at a time, and takes as input a variety of data:

The Kepler Input Catalog10 (KIC) providing information about stars in the Kepler field.

The Pixel Response Function20 (PRF), an observation-based super-resolution representation of how starlight
falls on pixels. The PRF includes the optical point spread function convolved with intra-pixel variability
and high-frequency pointing jitter.

Target definitions,8 that define the target stars and which pixels are to be observed in LC, SC and RP.

Solar-like variability model

Pointing jitter model, an estimate of the low-frequency spacecraft pointing jitter.

Focal plane geometry (FPG) and pointing model,21 which includes measurements of the locations of the
CCDs in the Kepler focal plane, models of the Kepler optics and of DVA. These models are used to
determine the pixel location of the central ray of each stellar target.

Saturation model,21 which includes information about the well depth of each output channel.

Other data about CCDs and system electronics,21 such as flat fields, CCD charge diffusion and charge
transfer efficiency (CTE), electronic dark levels, observed instrumental noise.

Cosmic rays are simulated as described in the 2004 ETEM paper.13

The above data are provided to ETEM by a user-created MATLAB script. This input script specifies various
parameters and which classes and plugins implement the above models. Most models have a variety of plugins
available, allowing the user to choose what phenomena are simulated in a particular run (see §4).

2.1 Simulating stars, their positions and motions

ETEM simulates dynamic stellar brightness modulations only for stars on the observed target list defined by
the input target definitions (§1.2). All other stars are considered to have static magnitudes, and shot noise is
injected into all pixels based on their values. All stars are subject to DVA and pointing jitter motions.

A primary concern of ETEM is the ability to produce 90 days of simulated data for all 84 channels in a
reasonable amount of time. This is facilitated by parallelizing the simulation, computing each output channel’s
data on a separate system in the SOC cluster.3 But a single channel contains tens of thousands of stars in
the KIC including about 2000 observational targets that require dynamic modulations. Significant performance
speedup is achieved by performing the simulation at the co-added LC or SC cadence time resolution rather than
simulating individual 6.5s exposures. LC and SC simulations are performed separately.

Another significant performance-enhancing strategy is based on the insight that stellar motions due to DVA
and pointing jitter are critical systematics in Kepler observations and therefore must be modeled by ETEM.
Rather than rendering all stars on an output channel from scratch, which would be quite slow, ETEM develops



a linear polynomial model of the response to each pixel’s starlight to motion of that star on a sub-pixel (nomi-
nally 0.1 pixel) grid. This approach takes advantage of the highly optimized linear algebra algorithms used by
MATLAB. This strategy has been described in a previous paper.13 Here we provide a brief summary.

First, each star in the KIC that falls on the output channel being simulated is projected onto the sub-pixel
grid. Then a polynomial representation PRF (∆x,∆y) of the PRF for this channel as a function of offset
(∆x,∆y) is created on the sub-pixel grid that covers the extent of DVA and jitter motion. For each sub-pixel
position, the flux (as determined from the KIC) of all stars projected on that position is summed and then
convolved with each coefficient of PRF (∆x,∆y). The result is a representation of the flux in pixel (r, s) of the
form

pr,s (∆x,∆y) =
O∑

i,j=0

ci,j,r,s∆xi∆yj. (1)

Here the coefficients ci,j,r,s is the convolution of the flux falling on pixel (r, s) with the corresponding coefficient
of PRF (∆x,∆y), and O is the number of coefficients as determined by the order of the polynomial. This
convolution gives a set of polynomial coefficients for all pixels on the output channel pixel array, which can be
quickly evaluated for any small offset (∆x,∆y). The polynomial coefficients for each observed target star are
also stored separately to facilitate the addition of dynamic signals to these stars as described below.

The offsets (∆x,∆y) are themselves represented by a 2D polynomial fit to a grid of artificial “stars” projected
on the sky. DVA and motion jitter models are applied to these fake stars and their resulting positions fit with
a 2D motion polynomial for each simulated cadence. This structure allows an entire channel of flux data to be
filled by first evaluating the motion polynomial on all pixels, which provides (∆x,∆y) for each pixel, and then
evaluating (1) on these offsets for each pixel. Polynomial evaluations are very fast in MATLAB: all pixels on the
channel are rendered by a small number of polynomial evaluations. An image resulting from the evaluation of
these polynomials at a single cadence is shown in Figure ??.

Observational targets have further brightness modulation due to stellar variability (§2.1.1) and transit models
(§2.1.2). For each target, the light curves from these modulations are multiplied together to form the final
modulation light curve Lm, which is normalized to 1 when there is no modulation. For each cadence, the stored
pixel flux polynomials for each target are evaluated using (∆x,∆y), producing the pixel values Ptarget for that
target only. A copy Pmodulated of Ptarget, and the difference Ptarget − LmPmodulated is added to the simulated
pixel array containing all targets at the target’s position. As a result the target’s contribution to its pixels is
modulated by Lm.

The above polynomial framework is not suited for saturated targets, whose flux spills up and down CCD
columns. Kepler includes saturated targets in its observations because saturation spill in the Kepler CCDs is
conservative. Therefore the flux of a saturated target can be measured so long as all saturated pixels are cap-
tured. Saturated targets are treated in ETEM as a special case after the polynomial pixel rendering, simulating
saturation spill on a target-by-target basis.

2.1.1 Stellar variability

Stellar variability is modeled using a 4-year observation of Solar observations from the DIARAD instrument
on the Solar Heliospheric Observatory.12 Differences in variability among different stars is modeled using the
relationship between photometric variability σphot and rotation period Prot given by16, 17 σphot ≈ P−1.5

rot . Observed
target stars are randomly assigned a rotation period within a specified range centered on the Solar rotation period.
Frequencies in the DIRAD data are scaled to the chosen rotation period, and the resulting time series is scaled
to σphot. There is no attempt to match these parameters to stellar properties in the KIC, so all observed targets
are assigned near-Solar variability regardless of their luminosity class. Because stellar variability is implemented
as a plugin (see §??) it is easy to implement other stellar variability models.

2.1.2 Transit simulation

User input determines which observed targets are assigned eclipsing binary and/or transiting planet light curves.
The user can assign a range of target parameters such as magnitude or surface gravity, in which case a specified
number of observed targets are selected from these ranges. Alternatively a specific Kepler ID in the KIC can
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Figure 2. An image of an output channel simulated in ETEM based on the KIC, showing stars, including saturated stars

with saturation spill along vertical columns, as well as faint smear trails.

be specified. Parameters of the eclipse/transit are chosen from user-specified ranges. For eclipsing binaries
these user-specified ranges include orbital period, minimum impact parameter, secondary star logG and effective
temperature while eccentricity is chosen from the model of Duquennoy and Mayor.18 For planetary transits
these parameters include period, minimum impact parameter, eccentricity and radius. The orientation of the
orbit relative to the line of sight, which determines the epoch, is randomly chosen in a way that delivers the
specified impact paramter. Primary star properties are obtained from the KIC when possible, otherwise they
are drawn from the Besancon model.19 These parameters are used to construct a Keplerian orbit, from which
a high-time-resolution time series of the secondary impact parameter is computed. Care is taken to assure that
the periastron of an orbit occurs outside the primary star’s radius, possibly overriding the input orbital period,
but there is no attempt to enforce dynamical constraints when multiple planet systems are defined. It is up to
the user to avoid specifying unrealistic planetary systems.

Given an impact parameter time series, eclipsing binary and planetary transit light curves are simulated
using the analytic model of Mandel and Agol.14 This model provides a direct simulation of the transit light
curve accounting for nonlinear limb darkening. The MATLAB implementation of this method was based on an
IDL script provided by Agol, available at http://www.astro.washington.edu/users/agol/. ETEM uses nonlinear
limb darkening coefficients from the Atlas model.15 For eclipsing binaries the resulting transit signals are scaled
according to the relative brightnesses of the stellar components and whether the eclipse is a primary or secondary.
A simulated Jupiter-size transit is shown in Figure ??.
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Figure 3. The light curve of a transiting Jupiter-size planet simulated in ETEM, with a closeup in the bottom panel. The

effects of limb darkening are visible in the closeup.

3. A FRAMEWORK TO SUPPORT EXTENSIBILITY

ETEM is designed to support testing both the flow of data and the the SOC data analysis pipeline from pixel
calibration through planet detection described in 1.3. This entails simulating many aspects of the data collected
by the spacecraft, and how that data is flowed though the Kepler system. ETEM is required to respond to
new and unexpected information that has become available throughout the multi-year Kepler mission, allowing
contributions from multiple developers. These developers must not be required to understand the full ETEM
system in order to contribute new functionality.

The simulated aspects fall into two groups:

Simulations of astrophysical phenomena and spacecraft properties and systematics, which are sub-
ject to change as our knowledge of the spacecraft and sky improve in flight. Different phenomena are
included in a particular simulation run in order to isolate the response of the system to individual phe-
nomena, reflect improved knowledge of the sky or spacecraft, and allow controlled tests of non-realistic
inputs.

Simulations of data formats at various stages of the flow of data through Kepler ground processing. These
formats are rigidly fixed and so is not dynamic

Because the desired astrophysical phenomena or spacecraft properties in a simulation can change over time, an
extensible object-oriented framework that implements a plug-in philosophy was chosen. The plugin philosophy
is chosen to simplify the addition of new pheneomena to ETEM, satisfying the requirement that developers need
not be expert in all of ETEM in order to add functionality. This framework is implemented in MATLAB, while
the relatively rigid simulation of formats is implemented in java. This rest of this paper describes the MATLAB
implementation of the simulation framework.
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Figure 4. The ETEM class structure. The ccd class contains a list of several global classes including noise and motion

models, as well as a list of ccdPlane classes. Each ccdPlane class contains target lists, the PRF class and motions for

targets on that ccdPlane.

3.1 The ETEM Class Structure

ETEM is implemented in a version of MATLAB that did not support full object-oriented class hierarchies.
Therefore the class design in ETEM is relatively flat, with a few high-level classes managing lists of lower-level
classes. Class inheritance and subclassing is used only sparingly. If ETEM were to be implemented in more
recent versions of MATLAB there would be much wider use of inheritance and subclassing.

All classes in ETEM are sub-classes of the runParams class, which contains the specification of all parameters
and plugins in a simulation. The runParams class is instantiated using data from a user-defined input script
that specifies all parameters of an ETEM simulation. The runParams class contains get but no set methods,
so other classes cannot change the runParams class once it has been created. In this way ETEM enforces data
consistency and ensures that objects are well-encapsulated from each other while providing global access to the
simulation’s specification.

The top-level class in ETEM is the ccd class (Figure ??) which contains all objects instantiated in an ETEM
run. The ccd class represents an output channel and is responsible for computing and rendering simulated pixel
values. The ccd class includes a list of ccdPlane objects, as well as global motion plugins that are applied to all
ccdPlanes. The pixel computation method described in §2 is implemented in the ccdPlane class, which contains
a list of stars rendered by that ccdPlane object, and slots for PRF and motion plugins. This structure allows,
for example, the simulation of pointing jitter and DVA motion for all stars on an output channel with parallax
motion on a small number of stars by having most stars in one ccdPlane object and the parallax stars in a second
ccdPlane object. In this example the pointing jitter and DVA motion are in the ccd object’s global motion list



while the parallax motion is in the second ccdPlane object’s motion list. Similarly intra-channel focus variation
can be simulated by using two ccdPlane objects with with differing PRFs.

The ccd object also includes plugins controlling global CCD properties such as read noise, well depth and
saturation spill symmetry.

The ccd object renders stellar pixel images in two ways in a nominal ETEM run: a rendering of all pixels
on the channel creating an FFI for the simulated channel at a specified time, and a rendering of flux time series

of target pixels for all cadences in a simulation, which includes the modulation of target pixel fluxes over time.
In both cases the ccd object calls the render method of the appropriate type (FFI or flux time series) in each
ccdPlane object in the ccd object’s list of ccdPlanes. Background and other global flux signals are rendered in
the first ccdPlane’s pixels. The resulting pixels sets, one for each ccdPlane, are summed by the ccd object to
produce the final rendered pixels.

The light curves used to modulate a target star are created by lightcurve classes, with a class for each type
such as a sohoStellarVariability, transitingPlanet or transitingStar class. The transiting object classes contain a
transitingOrbit class which collects the methods and data structures that are common to all transiting objects.
An example of the difference between the transiting planet and the transiting star classes include accounting for
flux from both stars in the transiting star class. The light curve for each of these classes is computed immediately
after the class is instantiated and stored in the resulting object.

Astrophysical signals on ETEM simulation targets are managed by the targetScienceManagement class. This
class contains a list of targetSpecification structures, one for each target. Each target’s list entry contains a list of
data structures defining what lightcurve classes are associated with that target as well as the objects instantiated
from those data structures. For example, a target’s list may contain an object implementing a stellar variability
model in the first entry, and an object for modeling a transiting planet in the second entry. The light curve
computation method for each lightcurve object of this list is called, producing a light curve normalized to [0,1]
for each list entry. These light curves are multiplied together to produce the final light curve for this target,
which is used in the rendering of the target pixels in the ccdPlane object containing this target.

The differences between long and short cadence simulations is managed in two ways: the input parameters
determine the cadence time (nominally about 30 minutes for long cadence, about one minute for short cadence),
and the differing output data is handled by instantiating either the longCadenceData or shortCadenceData class.
These classes have methods that convert the rendered pixel flux time series into the format appropriate to the
cadence type. The resulting object is contained in the ccd class, and the data formatting methods are called
after each cadence of pixels is computed.

3.2 ETEM Plugins

An ETEM plugin is a class, defined as a particular plugin by its interface. For example the read noise plugin
has two methods: a creation method and an apply noise method that takes as input an output channel’s pixels
and returns the pixels with the specified noise added. Plugins with differing interfaces are said to have different
plugin types. Each plugin type has a different slot in either the ccd or ccdPlane class.

Several plugin types are currently supported in ETEM, with the class that contains the plugin given in
parenthesis followed by different examples of each plugin:

PRF (ccdPlane class): pre-flight simulated or flight-measured PRFs.

TAD input (ccd class): flight target definitions or target definitions created from scratch according to some
specification.

Catalog reader (ccd class): stellar catalog sources. Implemented plugins include the KIC and custom star
catalogs defining artificial star fields (such as a grid of equally-spaced equal-magnitude stars) for controlled
tests.

Star selector (ccdPlane class): algorithmic selection of stars on a ccdPlane. Examples include stars selected
by position or magnitude, or by explicit specification via Kepler ID number.
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Figure 5. The ETEM plugin structure, showing how the plugins relate to the rendering of pixel values. Some of these

plugins are in the ccd object and are applied to all ccdPlanes. Other plugins are specific to particular ccdPlanes.

Additive background (ccd class): additive backgrounds such as zodiacal light or diffuse stellar background.

Cosmic ray (ccd class):models to add cosmic rays to rendered pixels.

Linearity (ccd class): specifies the linearity function, required to model near-saturation behavior.

Motion (ccd and ccdPlane classs): motion inputs such as pointing jitter or DVA motion to the computation
of the (∆x,∆y) used on §3.2

Flat-field (ccd class): flat fields, such as inter-pixel variability and vingetting, to apply to the pixel values.

Well-depth (ccd class): well-depth functions, including a single scalar value or spatially-varying values.

Charge transfer efficiency (ccd class): the function that defines charge transfer efficiency.

Gain modulation (ccd class): time or position dependent pixel gain.

Bias (ccd class): various bias functions added to the pixel values, including time, space and temperature
dependence.

Pixel noise (ccd class): pixel-value-dependent noise, such as shot noise.

Read noise (ccd class): output-channel-dependent read noise, which may be scalar or spatially dependent.

Cosmic ray (ccdPlane class): specify the simulation of cosmic rays.



Barycentric correction (ccdPlane class): specify time offset functions for light curve generation.

Light curve (ccdPlane class): light curve generation such as stellar variability and planetary transits.

The relationship of these plugins to the computation of pixel values is shown schematically in Figure ??

4. TESTING EXPERIENCE

The use of ETEM to generate simulated data has been absolutely crucial in pre-flight testing of the Kepler

ground system. Several problems in the flow of the data between organizations were uncovered and solved using
ETEM data. The SOC processing pipeline was debugged and shown to successfully identify transits using this
data.

The primary motivation for the software structure described in this paper is to enable new functionality to
be added to ETEM in a well-encapsulated way. This was tested by the addition of 30 new capabilities after the
basic framework was in place. Some of these capabilities were programmed by developers who had essentially
no knowledge of the inner workings of ETEM.

The ability of ETEM to simulate new, unexpected phenomena was demonstrated when, in the last year
before launch, unexpected time and temperature dependent bias signals were discovered in the Kepler pixel
values. These signals appear as an additive bias, and such a dynamic bias was not in the ETEM baseline design.
It was straightforward to create new plugins that simulated the new signal by simply extending the existing
bias plugin, adding the cadence time to its interface. Resulting simulations were used to show that the newly
discovered signal did not compromise mission-critical commissioning activities. This new plugin also allows the
ongoing assessment of SOC processing pipeline methods of correcting for this bias.

ETEM continues to be used to verify SOC processing software and test modifications to the SOC processing
pipeline. Occasionally these tests require new plugins to be defined, and (so far) the ETEM structure has
provided the desired support for such testing with a small amount of effort. There is little doubt that the time
invested in creating the extensible software structures described in this paper has saved significant time and
effort during testing.

5. CONCLUSIONS

This paper describes a robust extensible framework for simulating Kepler data. This framework has been used
extensively in the Kepler mission, both for pre-flight testing of the Kepler ground processing system and the
result of data processing, specifically the identification of planetary transits. The robust extensible nature of
the ETEM framework allows simulation of new phenomena discovered in flight, as well as the testing of new
algorithms developed to respond to these phenomena. The ability of developers new to ETEM to contribute new
functionality without knowledge of the inner workings of ETEM has been demonstrated on several occasions.
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